Ludmila Tumanova

Как научиться умножать


Как научиться быстро считать в уме? — Meduza

Перейти к материалам

Минимальные навыки счета, чувство числа — такой же элемент общечеловеческой культуры, как грамотное письмо и речь, владение иностранным языком, базовое представление об искусстве и окружающем мире.

Кроме того, когда вы легко считаете без подручных средств, вы чувствуете совершенно другой уровень управления реальностью — вы заранее знаете, сколько сдачи вам дадут в магазине или стоит ли набиваться всемером в лифт грузоподъемностью 400 килограммов.

Подумайте и о том, что калькулятор и действия в столбик — это же такая разновидность магии. Скорее всего, вы не понимаете, как это работает, и вынуждены просто доверять им. А когда вы хорошо понимаете, как устроены математические операции и можете их воспроизвести «руками», ваше чувство контроля (и уверенности в себе) получает серьезный бонус.

И наконец, устный счет развивает ваши ментальные способности: внимание, память, концентрацию, переключение между несколькими потоками мышления, а также может послужить средством для медитации или отвлечения от грустных мыслей.

Конечно, нет. В сети полно мобильных приложений, которые предложат вам тренировку математических навыков на любой вкус.

При выборе учтите, что хорошее приложение, как минимум, должно обладать достаточно гибкими настройками сложности и вести статистику решенных вами заданий.

Попробуйте эти приложения под iOS и Android или поищите альтернативные варианты в App Store и Google Play.

Основных математических действий всего четыре — сложение, вычитание, умножение и деление. У каждого действия есть свои особенности, но они не сложные. Надо один раз разобраться, а потом тренироваться минут по 5−10 в день, и очень скоро вы почувствуете, что считаете лучше. Скорее всего, за два-три месяца вы выйдете на достаточно приличный уровень, который можно будет поддерживать эпизодическими тренировками.

Начните с самого простого уровня — сложения однозначных чисел, и доведите его до совершенства: 99% правильных ответов, на каждый ответ 1−2 секунды. Для решения примеров «с переходом через 10» попробуйте использовать следующую технику — «Опора на десяток».

Допустим, вам нужно сложить 8 и 7.

1) Спросите себя, сколько числу 8 не хватает до 10 (это 2).

2) Представьте 7 как сумму 2 и какого-то второго кусочка (это 5).

3) Прибавляйте к 8 сначала ту часть числа 7, которой недоставало до 10, а потом тот второй кусочек — получится 10 и 5, и это, конечно, 15.

Здесь самый важный принцип — это сложение одинаковых разрядов друг с другом. Разбив оба числа на «разрядные части», начните складывать со старших разрядов — тысячи с тысячами, сотни с сотнями, десятки с десятками, единицы с единицами. То, что получится, при необходимости укрупняйте и снова считайте все вместе.

Например, как сложить 456 и 789?

1) 456 состоит из трех разрядных частей — 400, 50 и 6.

789 тоже разбивается на три разрядные части — это 700, 80 и 9.

2) Складываем сотни с сотнями: 400+700 = 1100, десятки с десятками: 50+80 = 130, единицы с единицами: 6+9 = 15.

3) Укрупняем, разбивая на удобные части, снова группируем и складываем одинаковые разряды: 1100+130+15 — это 1100+100+30+10+5, то есть, 1200+40+5 = 1245.

Поправка. При сложении разрядов мы перепутали единицы и к 6 прибавили 8 вместо 9. В итоге сумма тоже оказалась неправильной — 1244 вместо 1245. Приносим извинения за ошибку, и не повторяйте ее — внимательно следите за числами, особенно в устном счете!

И здесь надо начинать с базового уровня — вычитания однозначного числа из чисел первого и второго десятка — и довести этот навык до совершенства. Как и в случае сложения, проблемы обычно возникают с вычитанием «с переходом через 10». И здесь поможет аналогичный способ «опоры на десяток».

Допустим, нам нужно из 12 вычесть 8.

1) Спросим себя, сколько нужно отнять от 12, чтобы получилось 10 (это 2).

2) Будем из 12 вычитать 8 по частям — сначала вычтем эту 2, а потом все остальное. А остальное — это сколько? (это 6).

3) После вычитания 2 из 12 мы получили 10, и нужно вычесть еще 6, получится 4. Готово!

Не особенно. Важно только не путать технику вычитания с техникой сложения. При сложении нам было удобно разбивать каждое из чисел на разрядные части, а здесь мы разбиваем только то число, которое вычитаем.

Итак, допустим, нам нужно вычесть 512−259.

1) Число 259, которое мы вычитаем, состоит из трех разрядных частей — 200, 50 и 9. Их-то по очереди мы и вычтем.

2) 512−200 — вычитание сотен никак не затрагивает десятков и единиц числа 512, влияет только на сотни, так что результат будет такой — 312.

3) Из того, что получилось после вычитания сотен, теперь вычтем десятки, 312−50.

Это похоже на вычитание через десяток. Вычтем из 312 сначала 10 до целых сотен (единицы не будут затронуты), получим 302. А потом вычтем все остальное (всего нужно было вычесть 50, 10 уже вычли, осталось вычесть 40), получается 262.

4) Осталось вычесть единицы: 262−9.

Чистый переход через десяток — вычитаем сначала 2, получим 260, а потом вычитаем остальную часть, 7, получаем 260−7 = 253. Вот и ответ.

Начнем с умножения однозначных чисел. Для начала нужно вспомнить, что умножение — это когда несколько раз складывают одно и то же. Например, умножить 4 на 7 означает сложить четыре семерки. Пользуясь техникой сложения, мы можем легко посчитать — две семерки, 7 и 7, будет 14, если еще добавить третью 7, получится 21, и, добавляя последнюю, четвертую семерку, в результате получим 28.

Постепенно в результате тренировок вы запомните удобные вам опорные значения умножения и с их помощью сможете быстрее вычислять соседние. Например, если нужно умножить 6 на 7 (то есть, сложить шесть семерок), а вы помните, что 5 умножить на 7 (то есть, сложить пять семерок) будет 35, то чтобы получить итоговый результат, нужно просто добавить шестую семерку — получится 42.

Самым сложным примером в таблице умножения считается 7∙8. Для его запоминания есть неплохое мнемотехническое правило «пять шесть семь восемь», которое означает 56 = 7∙8.

Разберем на примере. Допустим, нам нужно умножить 468 на 6.

1) 468 состоит из 400, 60 и 8, и все это нужно умножить на 6. Что ж, по отдельности эти задачи не сложнее умножения однозначных чисел.

2) Идем от старшего разряда к младшему: 400∙6 = 2400 (поскольку 400 в 100 раз больше, чем 4, то и результат 400∙6 будет в 100 раз больше, чем результат 4∙6).

Соответственно, 60∙6 = 360, а 8∙6 = 48.

3) А теперь, как при сложении, складываем все это вместе, группируя одинаковые разряды:

(2000+400)+(300+60)+(40+8) = [перегруппируем] =

= 2000+(400+300)+(60+40)+8 = [сложим одинаковые разряды] =

= 2000+700+100+8 = [сгруппируем и сложим одинаковые разряды] =

= 2000+800+8 = [дальше укрупнять нечего, получаем ответ] = 2808.

Для обычного человека это уже высший пилотаж! Если вы освоили умножение двузначных, считайте, что вы приняты в мир элиты устного счета. Но на самом деле, и тут ничего принципиально сложного нет, просто выше нагрузка на краткосрочную память (заодно и потренируем ее).

Итак, например, умножим 78 на 56. Это означает, что нам нужно число 78 сложить («взять») 56 раз.

1) Эти 56 раз можно разбить на этапы — сначала 78 сложим 50 раз, потом 6 раз, а потом объединим результаты.

2) Число 78 сложить 50 раз несложно — это в 10 раз больше, чем сложить его 5 раз. 78∙5 = 70∙5+8∙5 = 350+40 = 390. А значит, 78∙50 = 3900, запомним это число.

3) Теперь посчитаем 78∙6 = 70∙6+8∙6 = 420+48 = 468.

4) Ну а теперь сложим вместе оба результата: 3900+468 = 3000+900+400+60+8 = 3000+1300+60+8 = 4368. Вуаля!

Поправка. На заключительном этапе при сложении 3900 и 468 мы неправильно разбили второе число на разряды — забыли про 60. В итоге в сумме получилось 4308. Приносим извинения за ошибку, и не повторяйте ее — нельзя терять в устном счете слагаемые.

Да, мы на финишной прямой. И снова начнем с самого простого уровня: деления на однозначное число тех чисел, которые знакомы нам по умножению однозначных.

Итак, что же такое деление? По сути, это «обратная» операция к умножению.

Например, разделить 56 на 7 — значит подобрать такое число, что если его умножить на 7, то получится 56. Поскольку вы к этому моменту уже хорошо ориентируетесь в таблице умножения, то наверняка вспомните, что именно 8, умноженное на 7, дает 56. Значит, искомое число — это 8, 56:7 = 8.

И так всегда — вспоминайте, какое число при умножении дает нужный результат — это и есть то число, которое вам нужно.

Давайте разделим 6144 на 8. Наш способ — «отрезать» от исходного числа максимальные «круглые» части, каждая из которых будет гарантированно делиться на 8 по таблице умножения.

1) Выделим из 6144 как можно большую часть, которая делится на 8 по таблице умножения. Это будет 5600, ведь 56 делится на 8, а следующее число, которое делится на 8 — это уже 64, что нам не подходит, так как 6400 больше, чем 6144. Прекрасно, 6144 — это 5600 и 544 (тут нам пригодился навык вычитания).

По ходу дела будем делить:

6144:8 = [выделяем максимальную удобную круглую часть] =

= (5600+544):8 = [выделенную часть делим на 8, а со второй поработаем на следующем шаге] =

= 700+544:8. 

700 запомним как частичный результат, а сами займемся делением 544:8.

2) Аналогично, из числа 544 самая большая часть, которую можно удобно разделить на 8 по таблице умножения, это 480 (ведь 48 делится на 8, а следующее число — 56 — нам не подходит, т. к. 560 > 544). Итак, 544 = 480+64.

Продолжаем деление:

544:8 = [выделяем максимальную удобную круглую часть] =

= (480+64):8 = [выделенную часть делим на 8, а со второй поработаем на следующем шаге] =

= 60+64:8.

60 добавим к 700, 700+60 = 760 — запомним это как вторую часть результата и перейдем к последнему делению, 64:8.

3) Оставшийся кусочек, 64, тоже делится на 8 по таблице умножения, 64:8 = 8.

Соответственно, полный результат деления — это 760+8=768. Все!

Техника деления на двузначное число — самая разнообразная, непохожая ни на что, изысканная. Познакомимся с ней на примере 5148:66.

1) Подгадаем, в каком десятке лежит наш результат. Напомним, что 5148:66 означает: мы ищем число, которое при умножении на 66 даст 5148. Будем использовать технику «пристрелки». 

Просто наугад попробуем число 20 как возможного кандидата. 20∙66 = 1320, это раза в 4 меньше, чем 5148, которое нам нужно. 

В 4 раза больше, чем 20 — это 80, попробуем его. 80∙66 = 5280, получилось больше, чем нужное 5148, но немного, скорее всего, это «верхний» десяток. 

Проверим для надежности 70, предыдущий перед 80 десяток. 70∙66 = 4620, это как раз меньше 5148, отлично! Значит, число, которое мы ищем, лежит между 70 и 80.

2) Воспользуемся математическим законом о последней цифре результата умножения двух чисел.

Оказывается, она всегда совпадает с последней цифрой результата умножения последних цифр этих чисел (попробуйте подумать, почему это так). Например, на какую цифру закончится 1234∙5678? На ту же, что и 4∙8, то есть на 2 (4∙8 = 32). 

Поэтому, если мы ищем число, которое при умножении на 66 даст 5148, то чтобы гарантировать эту 8 на последнем месте, искомое число может заканчиваться только либо на 3, либо на 8 (3∙6 = 18, 8∙6 = 48).

3) С такими окончаниями между 70 и 80 у нас два всего кандидата — 73 и 78. 

5148 явно ближе к 5280, поэтому сперва проверим 78.

78∙66 = 78∙60+78∙6 = 4680+468 = 5000+148 = 5148, ура! 

(Ну а если бы результат не сошелся, то мы бы проверили второе число, и оно бы уже точно подошло).

Вот, в общем-то, и все способы, которые достаточно знать для тренировки уверенного счета в пределах 10000 (а умение работать в уме с большими числами, пожалуй, уже выходит за рамки необходимого общего развития).

Наверняка вы также столкнетесь с другими приемами, т. н. «хитростями» быстрого счета, но не торопитесь увлекаться ими. Кроме того, помните, что регулярность важнее интенсивности — старайтесь заниматься на тренажере каждый день по 5−10 минут, больше не нужно, иначе велик риск «перегореть» и забросить. 

В процессе занятия никуда не торопитесь — ловите свой ритм, делайте упор на правильность ответов, а не на скорость, скорость придет потом.

Обязательно пробуйте проговаривать свои действия вслух, особенно на первых порах — у вас будет шанс почувствовать, как все это похоже на стихи, да и решать так будет проще.

И не расстраивайтесь, если что-то не выходит — дорогу осилит идущий, и рано или поздно у вас точно все получится.

meduza.io

22 простых способа научиться быстро считать в уме

Добрый день! Много вопросов поступает от школьников по разным предметам. Сегодня поговорим о том, как быстро считать в уме, чтобы легко решать разные примеры и задачи по математике.

Материал также будет полезен взрослым, ведь нам тоже приходится немало высчитывать в уме в быту. А еще это улучшает мозговую активность, концентрацию, внимание и память.

Читаем, изучаем, учимся легко и интересно.

Надеюсь, что вам будет понятно и обязательно пригодится на деле. Жду ваших комментариев, пальчиков вверх и репостов!

Вступление

В современном мире с множеством сверх прогрессивных девайсов, счет в уме не утратил своей актуальности.

Как научиться быстро считать в уме? Предложенные в данной статье методики помогут вам развить феноменальный талант быстрого счета.

Три составляющих успешного обучения

  • Способности. Для того чтобы научиться считать в уме, следует уметь концентрировать внимание на поставленной задаче и удерживать в памяти сложные числа.
  • Формулы. Чтобы легко и просто производить вычисления в уме, следует запомнить основные математические формулы.
  • Практика. Частые тренировки позволят развить и усовершенствовать навык.

Учимся устно умножать на 11

Существует несколько простых способов умножения числа на 11.

Способ 1

При умножении 2-значного числа на 11, раздвинем цифры множителя.

Например (54 * 11): 5 _ 4 * 11=…

Теперь суммируем единицы и десятки, а полученный результат записываем в ответе: 5 (5+4) 4 * 11 = 5 (9) 4 = 594

Например (89 * 11): 8 _ (8+9) _9 = 8 _ (17) _ 9 = _ (8+1) _ 79 = 979

Способ 2

При умножении на 11 разложим число 11 на сумму: 10+1, и произведем умножение частей.

Например: 12 * 11 = 12 * (10+1) = 120 + 12 = 132

Так же и с 3-значными числами: 114 * 11 = 114 * (10+1) = 1140 + 114 = 1254

Умножаем на 9 и 11

Примеры: 15 * 9 = 15 * 10 – 15 = 150 — 15 = 135 57 * 11 = 57 * 10 + 57 = 570 + 57 = 627

Возведение в квадрат числа, заканчивающегося на 5

Достаточно простая методика. Умножаем десяток на самого себя +1, и дописываем «25» в конце.

Например (35 * 35): 35 * 35 = 3 * (3+1)_25 = 1225

Устное умножение на 5, 25, 50, 125

Умножить на 5 числа до 10-ти не составляет проблем

Давайте научимся так же легко умножать двузначные и трехзначные числа.

Способ 1

Разделим наш множитель на «2». Получилось целое число? Значит, добавим к нему в конце «0», если число поровну не делится – отбрасываем остаток и добавляем «5» в конце.

Например (1482 * 5): 1482 * 5 = (1482/2) _ (+0 или +5) = 741 _(+0) = 7410 – число делится на 2 без остатка

2269 * 5 = (2269/2) _ (+0 или +5) = 1134.5 _ (+5) = 11345 – число делится на 2 с остатком

Способ 2

Умножая число на 5, 25, 50, 125 можно использовать следующие формулы: А * 5 = А * 10 / 2 А * 50 = А * 100 / 2 А * 25 = А * 100 / 4

А * 125 = А* 1000 / 8

Примеры: 44 * 5 = 44 * 10 / 2 = 440 / 2 = 220 24 * 50 = 24 * 100 / 2 = 2400 / 2 = 1200 26 * 25 = 26 * 100 / 4 = 2600 / 4 = 650

54 * 125 = 54 * 1000 / 8 = 54000 / 8 = 6750

Учимся устно умножать на 4

Достаточно простой метод, не требующий особых усилий.

Умножаем число на «2», а потом полученный результат снова умножаем на «2».

Например: 27 * 4 = 27 * 2 * 2 = 54 * 2 = 108

Вычисляем в уме 15 % от числа

Находим 10% от числа и добавляем ½ от 10%.

Например: 15% от 664 = (10% ) + (10% / 2) = 66.4 + 33.2 = 99.6

Умножаем в уме большие числа, одно из которых четное

Например: 48 * 125 = 24 * 250 = 12 * 500 = 6 * 1000 = 6000

Учимся делить на 5, 50, 25

Один простой прием поможет вам быстро делить в уме: умножим наше число на «2» и переместим запятую на одну цифру назад.

145 / 5 = 145 * 2 = 290 (смещаем запятую) = 29 1200 / 5 = 1200 * 2 = 2 400 (смещаем запятую) = 240

При делении на 50, 25, удобно воспользоваться формулами:

А / 50 = А * 2 / 100 А / 25 – А * 4 / 100

Примеры: 2350 / 50 = 2350 * 2 / 100 = 4700 / 100 = 47

2600 / 25 = 2600 * 4 / 100 = 10400 / 100 = 104

Вычитаем из 1000

Для того, чтобы вычесть число из 1000, отнимаем каждую цифру числа от «9», а последнюю цифру отнимаем от 10.

Например: 1000 – 248 = (9-2) _ (9-4) _ (10-8) = 752

Умножаем простые числа

Пример, умножим 7 на 8: 3 __ 2 7 8 8 – 3 = 5 _ 3 * 2 = 6

Итог: 56

Умножаем числа от 10 до 20

Для того чтобы быстро в уме умножать числа от 10 до 20-ти, следует знать одну хитрость: к одному числу прибавим единицы другого, а сумму умножим на 10, к полученному результату добавим произведение единиц.

Пример: 13 * 15 = (13 + 5) * 10 + 3 * 5 = 180 + 15 = 195

Складываем и вычитаем натуральные числа

1. Если слагаемое увеличить на некоторое число, то это же число следует вычесть из полученной суммы.

Например: 650 + 346 = (650 + 346 + 4) – 4 = (650 + 350) – 2 = 1000 – 2 = 998

2. Если одно слагаемое уменьшить на некоторое число, а ко второму слагаемому это же число добавить, то сумма не изменится.

Например: 335 + 765 = (335 + 5) + (765 — 5) = 340 + 760 = 1100

3. Если к уменьшаемому и вычитаемому добавить одно и то же число, результат не изменится.

Например: 225 — 339 = (225 + 5) — (339 + 5) = 230 — 344 = 114

Умножаем числа с одинаковым количеством десятков, сумма единиц которых = 10

Например: 302 * 308 = .. 1). 30 * (30 + 1) = 900 + 30 = 930 2). 2 * 8 = 16

Умножаем на число, состоящее из цифр 9

Как умножить на число 9, 99, 999?

Для этого просто добавим недостающие единицы и произведем вычисление.

Пример: 154 * 99 = 154 * (100 — 1) = 15400 — 154 = 15246

Складываем близкие по величине числа

Производим вычисление ряда чисел, близких по величине

Их можно разложить, и сложить частями.

Например: 19 + 22 + 23 + 21+ 24 + 17=…

Разложим слагаемые: 19 = 20 — 1 22 = 20 + 2 23 = 20 + 3 21 = 20 + 1 24 = 20 + 4

17 = 20 -3

Итог: 20 * 6 + (2-1+3+1+4-3) = 120 + 6 = 126

Надеемся, что наши советы помогут вам освоить приемы быстрого счета в уме. Следует помнить, что теория – это лишь 20 % успеха. Остальные 80% — ваше желание и практика.

[Источник: http://domznaniy.ru/]

Несколько полезных советов

Зачем нужен устный счет, если на дворе 21 век, и всевозможные гаджеты способны едва ли не молниеносно производить любые арифметические операции? Можно даже не тыкать в смартфон пальцем, а дать голосовую команду – и немедленно получить правильный ответ. Сейчас это успешно проделывают даже школьники младших классов, которым лень самостоятельно делить, умножать, складывать и вычитать.

Но у этой медали есть и обратная сторона: ученые предупреждают, что если мозг не тренировать, не нагружать работой и облегчать ему задачи, он начинает лениться, его мыслительные способности снижаются. Точно так же без физических тренировок слабеют и наши мышцы.

О пользе математики говорил еще Михаил Васильевич Ломоносов, называющий ее прекраснейшей из наук: «Математику уже за то любить надо, что она ум в порядок приводит».

Устный счет развивает внимание, память, быстроту реакции. Недаром появляются все новые и новые методики быстрого устного счета, предназначенные и для детей, и для взрослых. Одна из них – японская система устного счета, в которой используются древние японские счеты «соробан».

Любопытно, что всего за два года ученики таких школ (сюда принимают детей в возрасте 4–11 лет) учатся совершать арифметические действия с 2-значными, а то и 3-значными цифрами. Малыши, не знающие таблицы умножения, здесь умеют умножать. Они складывают и вычитают большие числа, не записывая их столбик. Но, конечно же, цель обучения – это сбалансированное развитие правого и левого полушарий головного мозга.

Овладеть устным счетом можно и с помощью задачника «1001 задача для умственного счета в школе», составленного еще в 19 веке сельским учителем и известным педагогом-просветителем Сергеем Александровичем Рачинским. В пользу этого задачника говорит тот факт, что он выдержал несколько изданий. Эту книгу можно найти и скачать в Интернете.

Люди, практикующиеся в быстром счете, рекомендуют книгу Якова Трахтенберга «Система быстрого счета». История создания этой системы весьма необычна. Чтобы выжить в концлагере, куда его отправили нацисты в 1941 г., и не утратить ясность ума, цюрихский профессор математики занялся разработкой алгоритмов математических действий, позволяющих быстро считать в уме. А после войны написал книгу, в которой система быстрого счета изложена настолько понятно и доступно, что она и сейчас пользуется спросом.

Хорошие отзывы и о книге Якова Перельмана «Быстрый счет. Тридцать простых примеров устного счета». Главы этой книге посвящены умножению на однозначное и двузначное число, в частности умножению на 4 и 8, 5 и 25, на 11/2, 11/4, ѕ, делению на 15, возведению в квадрат, вычислениям по формуле.

Простейшие способы устного счета

Быстрее овладеют этим навыком люди, обладающие определенными способностями, а именно: способностью к логическому мышлению, умением сконцентрироваться и сохранять в краткосрочной памяти несколько образов одновременно.

Ну и, конечно же, не обойтись без регулярных тренировок!

В числе самых распространенных приемов быстрого счета следующие:

Умножение двузначного числа на однозначное.

Умножить двузначное число на однозначное проще всего, разложив его на две составляющие. Например, 45 — на 40 и 5. Далее каждую составляющую умножаем на нужное число, к примеру на 7, отдельно. Получаем: 40 × 7 = 280; 5 × 7 = 35. Затем получившиеся результаты складываем: 280 + 35 = 315.

Умножение трехзначного числа.

Умножать в уме трехзначное число также намного проще, если разложить его на составляющие, но представив множимое так, чтобы с ним легче было производить математические действия. Например, нам нужно умножить 137 на 5.

Представляем 137 как 140 − 3. То есть получается, что мы теперь должны умножить на 5 не 137, а 140 − 3. Или (140 − 3) х 5.

Ну а дальше каждую часть умножаем отдельно: 140 × 5 − 3 × 5 = 700 − 15 = 685.

Зная таблицу умножения в пределах 19 х 9, можно сосчитать еще быстрее. Раскладываем число 137 на 130 и 7. Далее умножаем на 5 сначала 130, а затем 7, и результаты складываем. То есть 137 × 5 = 130 × 5 + 7 × 5 = 650 + 35 = 685.

Разложить можно не только множимое, но и множитель. Например, нам нужно умножить 235 на 6. Шесть мы получаем, умножив 2 на 3. Таким образом, 235 сначала множим на 2 и получаем 470, а затем 470 умножаем на 3. Итого 1410.

Это же действие можно произвести иначе, представив 235 как 200 и 35. Получается 235 × 6 = (200 + 35) × 6 = 200 × 6 + 35 × 6 = 1200 + 210 = 1410.

Таким же образом, раскладывая числа на составляющие, можно выполнять сложение, вычитание и деление.

Умножение на 10-ть.

Как умножать на 10, известно всем: просто приписать к множимому нуль. Например, 15 × 10 = 150. Исходя из этого, не менее просто умножать и на 9. Сначала к множимому припишем 0, то есть умножим его на 10, а затем от получившегося числа отнимем множимое: 150 × 9 = 150 × 10 = 1500 − 150 = 1 350.

Умножение на 5-ть.

Легко умножать и на 5. Следует всего лишь умножить нужно число на 10, а получившийся результат разделить на 2.

Умножение на 11-ть.

Интересно умножать двузначные числа на 11. Возьмем, к примеру, 18. Мысленно раздвинем 1 и 8, и между ними впишем сумму этих чисел: 1 + 8. У нас получится 1 (1 + 8) 8. Или 198.

Умножение на 1,5.

При необходимости умножить какое-нибудь число на 1,5 делим его на два и прибавляем получившуюся половинку к целому: 24 × 1,5 = 24 / 2 + 24 = 36.

Это лишь самые простые способы устного счета, с помощью которых мы можем тренировать свой мозг в быту. Например, подсчитывать стоимость покупок, стоя в очереди в кассу. Или же совершать математические действия с цифрами на номерах проезжающих мимо машин. Те же, кто любит «играться» с цифрами и хочет развить свои мыслительные способности, могут обратиться к книгам вышеупомянутых авторов.

[Источник: https://bbf.ru/]

Дальше — интереснее!

Не все мы выдающиеся математики. На кого-то эта наука наводит ужас при одном ее упоминании. Возможно, следующие советы помогут вам и вы сможете быстрее делать математические вычисления в уме.

Умножение на 11

Берем двузначное исходное число и мысленно представляем промежуток между двумя этими цифрами (для примера возьмем число 52): 5_2

Теперь складываем эти два числа, записав их еще и по середине: 5_(5+2)_2

Ответ: 572.

Если при сложении чисел в скобках получается двузначное число, то вторую цифру запомните, а вторую прибавьте к первому числу: 9_(9+9)_9 (9+1)_8_9 10_8_9

1089

Это правило работает всегда!

Быстрое возведение в квадрат

Пример: (2x(2+1)) * 25=252 2 x 3 = 6

625

Умножение на 5

Пример: 2682 x 5 = (2682 / 2) * 5 и 0 2682 / 2 = 1341 (целое число, поэтому добавляем 0)

13410

Еще пример: 5887 x 5 2943,5 (дробное число (опускаем запятую, добавляем 5)

29435

Умножение на 9

Умножение на 4

Хитрость этого способа состоит в том, что нужно просто умножить число на 2, а потом снова на 2: 58 x 4 = (58 x 2) + (58 x 2) = (116) + (116) = 232

Как рассчитать чаевые

Пример: 15% от $25 = (10% от 25) + ((10% от 25) / 2)

$2.50 + $1.25 = $3.75

Сложное умножение

Если вам нужно перемножить большие числа, причем одно из них четное, вы можете просто перегруппировать их: 32 x 125 все равно, что: 16 x 250 все равно, что: 8 x 500 все равно, что:

4 x 1000 = 4,000

Деление на 5

Пример: 195 / 5 195 * 2 = 390

Переносим запятую: 39,0 или просто 39.

Еще пример: 2978 / 5 2978 * 2 = 5956

595,6

Вычитание из 1000

Отнимите от 9 все цифры, кроме последней. А последнюю цифру отнимите от 10: 1000 — 648

  • от 9 отнимите 6 = 3
  • от 9 отнимите 4 = 5
  • от 10 отнимите 8 = 2

Ответ: 352

Систематизированные правила умножения

  • Умножение на 5: умножьте на 10 и разделите на 2.
  • Умножение на 6: иногда легче умножить на 3, а потом на 2.
  • Умножение на 9: умножьте на 10 и отнимите исходное число.
  • Умножение на 12: умножьте на 10 и дважды прибавьте исходное число.
  • Умножение на 13: умножьте на 3 и 10 раз прибавьте исходное число.
  • Умножение на 14: умножьте на 7, а затем на 2.
  • Умножение на 15: умножьте на 10 и 5 раз прибавьте исходное число.
  • Умножение на 16: если хотите, 4 раза умножьте на 2. Или умножить на 8, а потом на 2.
  • Умножение на 17: умножьте на 7 и 10 раз прибавьте исходное число.
  • Умножение на 18: умножьте на 20 и дважды отнимите исходное число.
  • Умножение на 19: умножьте на 20 и отнимите исходное число.
  • Умножение на 24: умножьте на 8, а потом на 3.
  • Умножение на 27: умножьте на 30 и 3 раза отнимите исходное число.
  • Умножение на 45: умножьте на 50 и 5 раз отнимите исходное число.
  • Умножение на 90: умножьте на 9 и припишите 0.
  • Умножение на 98: умножьте на 100 и дважды отнимите исходное число.
  • Умножение на 99: умножьте на 100 и отнимите исходное число.

Как высчитать проценты?

Пример: необходимо вычислить 7% от 300.

Выходит, что 7% от 100 будет 7. 8% от 100 = 8.

35,73% от 100 = 35,73

Вернемся к нашему примеру (7% от 300). 7% от первой сотни = 7 7% от второй сотни — тоже 7 7% от третьей сотни — так же 7.

Итак, 7 + 7 + 7 = 21.

Если 8% от 100 = 8, то 8% от 50 = 4 (половина от 8).

Еще примеры: 8% от 200 = 8 + 8 = 16. 8% от 250 = 8 + 8 + 4 = 20 8% от 25 = 2,0 (передвигаем запятую влево) 15% от 300 = 15+15+15 =45

15% от 350 = 15+15+15+7,5 = 52,5

[Источник: http://great.az/]

Что еще стоит знать

Как бы стыдно мне не было, но к своим 30 годам я поняла, что очень плохо считаю в уме элементарные числа и трачу на это много времени. Этот недостаток я решила исправить и нашла на просторах интернета инструменты, которые помогли мне научиться считать в уме.

Вычитание 7,8,9 Чтобы вычесть 9 из любого числа, нужно вычесть из него 10 и прибавить 1. Чтобы вычесть из любого числа 8, нужно вычесть из него 10 и прибавить 2. Чтобы вычесть 7 из любого числа, нужно вычесть из него 10 и прибавить 3. Если обычно вы считаете по другому, то для лучшего результата вам нужно привыкнуть к этому новому способу.

  • Умножение на 9. Быстро умножить любое число на 9 можно следующим образом: сначала умножьте это число на 10 (просто добавьте 0 в конце), а затем вычтите из результата само число. Например 89*9=890-89=801. Эту операцию необходимо довести до автоматизма.
  • Умножение на 2. Для устного счета очень важно уметь быстро умножать любое число на 2. Для умножения на 2 не круглых чисел попробуйте округлить их до ближайших более удобных. Так 139*2 проще считать, если сначала умножить 140*2 (140*2=280). а потом вычесть 1*2=2 (именно 1 нужно прибавить к 139, чтобы получить 140) Итого: 140*2-1*2=278
  • Деление на 2. Для устного счета также важно уметь быстро делить любое число на 2. Несмотря на то, что многим умножение и деление на 2 дается достаточно просто, в сложных случаях также пытайтесь округлять числа. Например, чтобы разделить 198 на 2, нужно сначала разделить 200 (это 198+2) на 2 и отнять 1 (1 мы получили, разделив прибавленные 2 на 2) Итого: 198/2=200/2-2/2=100-1=99.
  • Деление и умножение на 4 и 8. Деление (или умножение) на 4 и 8 являются двукратным или трехкратным делением (или умножением ) на 2. Производить эти операции удобно последовательно. Например, 46*4=46*2*2=922*2=184
  • Умножение на 5. Умножать на 5 очень просто. Умножение на 5 и деление на 2 — это практически одно и то же. Так 88*5=440, а 88/2=44, поэтому всегда умножайте число на 5, поделив число на 2 и умножив его на 10.
  • Умножение на однозначные числа. Чтобы быстро считать в уме, полезно уметь умножать двузначные и трехзначные числа на однозначные. Для этого нужно умножать дву- или трехзначное чило поразрядно. Например, умножим 83*7. Для этого сначала умножим 8 на 7 (и допишем 0, так как 8 — разряд десятков) и прибавим к этому числу произведение 3 и 7. Таким образом, 83*7=80*7+3*7=560+21=581. Возьмем более сложный пример 236*3. Итак, умножаем сложное число на 3 поразрядно: 200*3+30*3+6*3=600+90+18=708.
  • Определение диапазонов. Чтобы не запутаться в алгоритмах и по ошибке выдать совсем неверный ответ, важно уметь строить примерный диапазон ответов. Так умножение однозначных чисел друг на друга, может дать результат не более 90 (9*9=81), двузначных — не более 10 000 (99*99 =9801), Трехзначных не более — 1 000 000 (999*999=998001)

Деление 1000 на 2,4,8,16. И наконец, полезно знать деление чисел, кратных 10 на числа, кратные двум:

100=2*500=4*250=8*125=16*62,5

[Источник: http://evgeniyafirsova.ru/]

Как быстро умножать двузначные числа в уме?

Умение мгновенно считать в уме может стать бесценным подспорьем в работе и в условиях скоростных темпов жизни современного человека.

Как быстро умножать большие числа, как овладеть такими полезными навыками? У большинства вызывает затруднения устное перемножение двузначных чисел на однозначные. А о сложных арифметических расчетах и говорить нечего. Но при желании способности, заложенные в каждом человеке, можно развить. Регулярные тренировки, немного усилий и применение, разработанных учеными, эффективных методик позволят достичь потрясающих результатов.

Выбираем традиционные методы

Проверенные десятилетиями способы перемножения двузначных чисел не теряют своей актуальности. Простейшие приемы помогают миллионам обычных школьников, учащихся специализированных ВУЗов и лицеев, а также людям, занимающимся саморазвитием, усовершенствовать вычислительное мастерство.

Умножение с помощью разложения чисел

Наиболее легким способом, как быстро научиться умножать большие числа в уме, является перемножение десятков и единиц. Сначала умножаются десятки двух чисел, затем поочередно единицы и десятки. Четыре полученных числа суммируются. Для использования этого метода важно уметь запоминать результаты перемножения и складывать их в уме.

Например, для умножения 38 на 57 необходимо:

  • разложить число на (30+8)*(50+7);
  • 30*50 = 1500 – запомнить результат;
  • 30*7 + 50*8 = 210 + 400 = 610 – запомнить;
  • (1500 + 610) + 8*7 = 2110 + 56 = 2166

Естественно, необходимо отлично знать таблицу умножения, так как быстро умножать в уме этим способом не удастся без соответствующих умений.

Умножение в столбик в уме

Визуальное представление привычного перемножения в столбик многие используют при расчетах. Этот метод подойдет тем, кто умеет надолго запоминать вспомогательные числа и выполнять с ними арифметические действия. Но процесс значительно упрощается, если вы научились, как быстро умножать двузначные числа на однозначные. Для перемножения, например, 47*81 нужно:

  • 47*1 = 47 – запомнить;
  • 47*8 = 376 – запоминаем;
  • 376*10 + 47 = 3807.

Запоминать промежуточные результаты поможет проговаривание их вслух с одновременным суммированием в уме. Несмотря на сложность мысленных вычислений, после непродолжительных тренировок этот метод станет вашим любимым.

Умножение на 11

Это, пожалуй, самый простой способ, который используется для умножения любых двузначных чисел на 11.

Достаточно между цифрами множителя вставить их сумму: 13*11 = 1(1+3)3 = 143

Если в скобках получается число больше 10, то к первой цифре добавляется единица, а из суммы в скобках вычитается 10. 28*11 = 2 (2+8) 8 = 308

Главное — тренироваться непрерывно!

Очень удобно перемножать числа, близкие к 100 разложением их на составляющие. Например, необходимо умножить 87 на 91.

  • Каждое число необходимо представить как разницу 100 и еще одного числа:(100 — 13)*(100 — 9)Ответ будет состоять из четырех цифр, две первые из которых – разница первого множителя и вычитаемого из второй скобки или наоборот – разница второго множителя и вычитаемого из первой скобки.87 – 9 = 7891 – 13 = 78
  • Вторые две цифры ответа — результат перемножения вычитаемых из двух скобок.13*9 = 144
  • В результате получаются числа 78 и 144. Если при записывании окончательного результата получается число из 5 цифр вторую и третью цифру суммируем. Результат: 87*91 = 7944.

Это самые простые способы перемножения. После многократного их применения, доведения вычислений до автоматизма можно осваивать более сложные техники. И через некоторое время проблема, как быстро умножить двузначные числа перестанет вас волновать, а память и логика существенно улучшатся.

[Источник: http://interesno.cc/]

Поделиться статьей с друзьями!

1obuchenie.com

Как быстро и без нервов выучить таблицу умножения

Для начала нужно сделать две вещи: распечатать саму таблицу умножения и объяснить принцип умножения.

Для работы нам понадобится таблица Пифагора. Раньше её публиковали на обороте тетрадей. Выглядит она так:

Также вы можете увидеть таблицу умножения в таком формате:

Так вот, это не таблица. Это просто столбики из примеров, в которых невозможно найти логические связи и закономерности, поэтому ребёнку приходится учить всё наизусть. Чтобы облегчить ему работу, найдите или распечатайте настоящую таблицу.

2. Объясните принцип работы

psyh-olog.ru

Когда ребёнок самостоятельно находит закономерность (например, видит симметрию в таблице умножения), он запоминает её навсегда, в отличие от того, что он вызубрил или что ему сказал кто-то другой. Поэтому постарайтесь превратить изучение таблицы в интересную игру.

Приступая к изучению умножения, дети уже знакомы с простыми математическими действиями: сложением и умножением. Вы сможете объяснить ребёнку принцип умножения на простом примере: 2 × 3 — то же самое, что 2 + 2 + 2, то есть 3 раза по 2.

Объясните, что умножение — это короткий и быстрый путь провести вычисления.

Дальше нужно разобраться с устройством самой таблицы. Покажите, что числа из левого столбика умножаются на числа из верхней строки, а правильный ответ — на месте их пересечения. Найти результат очень просто: нужно только провести рукой по таблице.

3. Учите небольшими порциями

ytimg.com

Не нужно пытаться за один присест выучить всё. Начните с колонок 1, 2 и 3. Так вы постепенно подготовите ребёнка к усвоению более сложной информации.

Хорошая методика: взять пустую распечатанную или нарисованную таблицу и самостоятельно её заполнить. На этом этапе ребёнок будет не запоминать, а считать.

Когда он разобрался и достаточно хорошо усвоил самые простые столбцы, переходите к числам посложнее: сначала к умножению на 4–7, а затем на 8–10.

4. Объясните свойство коммутативности

blogspot.com

То самое известное правило: от перестановки множителей произведение не меняется.

Ребёнку станет понятно, что на деле ему нужно выучить не всю, а только половину таблицы, и некоторые примеры он уже знает. Например, 4 × 7 — то же самое, что 7 × 4.

5. Находите закономерности в таблице

secretwomans.ru

Как мы уже говорили ранее, в таблице умножения можно обнаружить множество закономерностей, которые упростят её запоминание. Вот некоторые из них:

  1. При умножении на 1 любое число остаётся тем же.
  2. Все примеры на 5 оканчиваются на 5 или 0: если число чётное, приписываем 0 к половине числа, если нечётное — 5.
  3. Все примеры на 10 оканчиваются на 0, а начинаются с числа, на которое мы умножаем.
  4. Примеры на 5 вполовину меньше, чем примеры на 10 (10 × 5 = 50, а 5 × 5 = 25).
  5. Чтобы умножать на 4, можно просто дважды удваивать число. Например, чтобы умножить 6 × 4, нужно удвоить 6 два раза: 6 + 6 = 12, 12 + 12 = 24.
  6. Чтобы запомнить умножение на 9, запишите ряд ответов в столбик: 09, 18, 27, 36, 45, 54, 63, 72, 81, 90. Запомнить нужно первое и последнее число. Все остальные можно воспроизвести по правилу: первая цифра в двузначном числе увеличивается на 1, а вторая уменьшается на 1.

6. Повторяйте

medaboutme.ru

Чаще занимайтесь повторением. Сначала спрашивайте по порядку. Когда заметите, что ответы стали уверенными, начинайте спрашивать вразброс. Следите и за темпом: сначала давайте побольше времени на размышление, но постепенно увеличивайте темп.

7. Играйте

utahpubliceducation.org

Пользуйтесь не только стандартными методами запоминания. Обучение должно увлекать, интересовать ребёнка. Поэтому используйте наглядные средства, играйте, применяйте разные методики.

Карточки

Игра проста: подготовьте карточки с примерами умножения без ответов. Перемешайте их, а ребёнок должен вытягивать по одной. Если он даёт правильный ответ, откладываем карточку в сторону, неправильный — возвращаем в стопку.

Игру можно разнообразить. Например, давать ответы на время. И каждый день подсчитывать количество правильных ответов, чтобы у ребёнка появилось желание побить свой вчерашний рекорд.

Играть можно не только на время, но и до тех пор, пока не кончится вся стопка примеров. Тогда за каждый неправильный ответ можно поручать ребёнку задание: рассказать стихотворение или прибрать вещи на столе. Когда же все карточки разгаданы, вручить небольшой подарок.

От обратного

Игра похожа на предыдущую, только вместо карточек с примерами вы готовите карточки с ответами. Например, на карточке написано число 30. Ребёнок должен назвать несколько примеров, которые в результате дадут 30 (например, 3 × 10 и 6 × 5).

Примеры из жизни

Обучение становится интереснее, если обсуждать с ребёнком вещи, которые ему нравятся. Так, у мальчика можно спрашивать, сколько колёс нужно четырём машинам.

Также можно использовать наглядные средства: палочки для счёта, карандаши, кубики. Например, возьмите два стакана, в каждом из которых по четыре карандаша. И наглядно покажите, что количество карандашей равно количеству карандашей в одном стакане, помноженному на количество стаканов.

Стихи

Рифма поможет запомнить даже сложные примеры, которые никак не даются ребёнку. Самостоятельно придумывайте незамысловатые стихи. Подбирайте самые простые слова, ведь ваша цель — упростить процесс запоминания. Например: «Восемь медведей рубили дрова. Восемью девять — семьдесят два».

8. Не нервничайте

Обычно в процессе некоторые родители забываются и совершают одни и те же ошибки. Вот список вещей, которые нельзя делать ни в коем случае:

  1. Заставлять ребёнка заниматься, если он не хочет. Вместо этого пытайтесь его мотивировать.
  2. Ругать за ошибки и пугать плохими оценками.
  3. Ставить в пример одноклассников. Когда тебя с кем-то сравнивают, это неприятно. К тому же нужно помнить, что все дети разные, поэтому к каждому нужно найти правильный подход.
  4. Учить сразу всё. Ребёнка легко напугать и утомить большим объёмом материала. Учитесь постепенно.
  5. Игнорировать успехи. Хвалите ребёнка, когда он справляется с заданиями. В такие моменты у него появляется желание учиться дальше.

Читайте также 🧐

lifehacker.ru

Как научиться быстро считать в уме?

Твитнуть

Поделиться

Поделиться

Отправить

Класснуть

Как давно вы считали в уме, а не столбиком, и уж тем более не с помощью калькулятора? Между прочим, считать в уме не только модно, но и полезно: так вы развиваете краткосрочную память, концентрацию и внимание. А ещё, какой же кайф испытываешь, когда можешь посчитать, сколько тебе должны дать сдачи, пока стоишь в очереди, м-м-м…

Всего несколько месяцев ежедневных тренировок по 5-10 минут, и вы почувствуете, как ускорился ваш мозг.

Сложение

Начнём с простого — сложения однозначных чисел. Научившись мгновенно складывать однозначные числа, вы сможете легко складывать и многозначные числа, потому что все расчёты сводятся к выполнению типовых действий. Вы в этом скоро убедитесь.

Сложение однозначных чисел

С примерами, результаты которых находятся в пределах 10 проблем нет. Эти комбинации чисел нужно просто запомнить, как основу основ.

А вот для примеров «с переходом через 10» уже есть методика — «опора на десяток». Суть в том, чтобы довести одно слагаемое до 10, а потом из второго слагаемого вычесть столько же, сколько мы прибавили к первому.

Например, нам нужно сложить 5 и 8:

  1. Числу 5 не хватает до 10 ещё столько же — 5.
  2. Теперь представим 8 как сумму 5 и ещё какого-то числа (это 3).
  3. И прибавим к 5 ту часть числа 8, которой недостаёт до 10, а затем и остаток. Получится 10 и 3, то есть 13.

Сложение многозначных чисел

Принцип сложения многозначных чисел — складывать друг с другом одинаковые разряды: тысячи с тысячами, сотни с сотнями, десятки с десятками, единицы с единицами.

Например, нам нужно сложить 245 и 917:

  1. 245 состоит из трёх разрядов — 200, 40 и 5. А 917 из 900, 10 и 7.
  2. Сложим разрядные части друг с другом:

    200 + 900 = 1100, 40 + 10 = 50, 5 + 7 = 12.

  3. А теперь сложим получившиеся числа в обратном порядке, «закрывая» нули:

    12 + 50 = 62

    62 + 1100 = 1162.

Вычитание

Как и со сложением, с вычитанием однозначных чисел из однозначных ничего сложного нет. А при вычитании однозначного числа из двузначного удобно пользоваться тем же правилом «опоры на десяток».

Вычитание однозначных числа

Например, нужно вычесть 13 − 7:

  1. Убираем у 13 столько, чтобы получилось 10 — то есть 3.
  2. Столько же убираем и у 7 — получается 4.
  3. Теперь просто вычитаем 4 из 10.

Вычитание многозначных чисел

Здесь всё даже проще, чем со сложением многозначных чисел, потому что на разрядные части нужно разложить только то число, которое вычитаем.

Например, нужно вычесть 734 − 427:

  1. Раскладываем 427 на разряды: 400, 20 и 7. Теперь последовательно вычитаем их из 734.
  2. Вычесть 734 − 400 очень просто, потому что действие происходит только с сотнями. Грубо говоря, мы вычитаем 4 из 7 — получаем 3, вернее, 334.
  3. С десятками всё аналогично: вычитаем 30 − 20, получаем 10 — 314.
  4. Теперь вычитаем единицы через десяток: 314 − 7.

    Убираем 4 из 314 и 7, получаем 310 − 3. Ну а тут уже совсем просто — ответ 307.

Небольшие хитрости

Чтобы вычитать 7, 8 и 9 было проще, часто прибегают к следующим правилам:

  1. При отнимании 9 из числа сначала вычитают 10, а затем добавляют 1:

    n − 10 + 1

    321 − 9 = 321 − 10 + 1 = 312

  2. При отнимании 8 из числа сначала вычитают 10, а затем добавляют 2:

    n − 10 + 2

    321 − 8 = 321 − 10 + 2 = 313

  3. При отнимании 7 из числа сначала вычитают 10, а затем добавляют 3:

    n − 10 + 3

    321 − 7 = 321 − 10 + 3 = 314

Умножение

Это когда несколько раз складывают одно и то же. Например, 7 × 3 = 7 + 7 + 7 = 21.

Чтобы научиться быстро умножать любые числа в уме (кроме совсем уж космических), нужно идеально умножать однозначные числа, то есть знать таблицу умножения.

Умножение однозначного числа на двузначное

Умножим 387 × 8:

  1. В первую очередь мы раскладываем 387 на разряды — 300, 80 и 7 — и умножаем каждый из них на 8.
  2. Начинаем с сотен: 300 × 8 — это то же самое, что умножить 3 × 8, а потом к результату дописать два нуля. То есть:

    3 × 8 × 100 = 24 × 100 = 2400.

    По аналогии, 80 × 8 = 640, 7 × 8 = 56.

  3. А теперь мы складываем получившиеся числа, объединяя их по разрядам:

    2400 + 640 + 56 = 2000 + 400 + 600 + 40 + 50 + 6 = 2000 + (400 + 600) + (40 + 50) + 6 = 2000 + 1000 + 90 + 6 = 3000 + 90 + 6 = 3096

Небольшие хитрости

  1. Любое число легко умножить на 9: нужно просто умножить на 10 (или дописать в конце ноль), а затем отнять исходное число.

    47 × 9 = (47 × 10) − 47 = 470 − 47 = 423

  2. Некруглое число можно легко умножить на 2, сначала округлив его до удобного ближайшего значения.

    Например, 237 × 2. Сначала проще умножить 240 × 2 = 480. А потом вычесть из результата 6 (3 × 2 = 6 — ведь 3 нам не хватало до 240). Итого:

    237 × 2 = 240 × 2 − (3 × 2) = 476

  3. Чтобы умножить любое двузначное число на 11, нужно сложить две цифры этого двузначного числа друг с другом, а затем вписать её между цифрами исходного числа:

    35 × 11

    3 + 5 = 8

    35 × 11 = 385

    Правда, если сумма двух цифр исходного числа больше 10, нужно поставить разряд единиц между цифрами исходного числа, а десяток прибавить к левой цифре:

    89 × 11

    8 + 9 = 17

    89 × 11 = 979

Умножение двузначных чисел

Хотя кажется, что умножать двузначные числа — вершина ментальных вычислений, решать такие примеры не сильно сложнее, чем в предыдущем пункте. Давайте разберём на примере.

Умножим 83 × 34:

  1. Разобьём 34 на 30 и 4, чтобы было проще, а затем умножим каждое на 83.
  2. 83 умножить на 30 просто — это как умножить 83 × 3, а потом умножить результат ещё на 10. Как умножать однозначные и двузначные числа мы разобрались. Считаем:

    83 × 3 = 80 × 3 + 3 × 3 = 240 + 9 = 249. Значит, 84 × 30 = 2490.

  3. Теперь умножим

    83 × 4 = 80 × 4 + 3 × 4 = 320 + 12 = 332.

  4. Сложим результаты:

    2490 + 332 = 2000 + 400 + 300 + 90 + 30 + 2 = 2000 + 700 + 120 + 2 = 2822.

Деление

Это операция, обратная умножению. Начнём снова с самого простого.

Деление двузначного числа на однозначное

Разделим 48 : 3. Основная задача — подобрать число, которое можно умножить на 3 и получить 48. Из таблицы умножения мы помним, что единственное число, результат умножения которого на 3 в конце имеет цифру 8 — это 6. А 3 × 6 = 18. То есть, у нас остаётся 30 : 3 = 10. Итого, получается 48 : 3 = 16.

Деление многозначного числа на однозначное

Разделим 6475 : 7. В подобных примерах главная задача — «взять» максимальные «круглые» части, которые можно разделить на 6 без остатка.

  1. Выделим из 6475 самую большую часть, которую можно разделить на 7 без остатка. 6475 близко к 7000 (то есть 7 × 1000), значит, можно попробовать взять 900 × 7 = 6300. Отлично!
  2. Остаётся 175. Таким же образом, выделяем из 175 самое большое число, которое можно разделить на 7 по таблице умножения — это 140. А 140 : 7 = 20. Запомним это число и вычтем 175 − 140. Сотни в результате дают ноль, а 7 − 4 = 3. То есть остаток на данный момент — 35.
  3. Вспоминаем, что по таблице умножения 7 × 5 = 35, и складываем все получившиеся числа: 900 + 20 + 5 = 925.

Деление на двузначное число

С делением на двузначное число всё гораздо интереснее. Задача в том, чтобы найти пределы, в которых лежит результат.

Например, разделим 6351 : 73:

  1. Сначала попробуем угадать, в каком десятке находится результат. Помним, что по таблице умножения 7 × 8 = 56, поэтому пробуем умножить 73 × 80 = 5840. Это максимально близкий десяток, потому что если прибавить ещё 730 (то есть 73 × 10), получится уже 6570 — больше чем нужно. Следовательно, наше число лежит в пределах между 80 и 90.
  2. Теперь посмотрим на последние цифры наших чисел — 1 и 3. Из таблицы умножения мы помним, что только одно число при умножении на 3 на на конце даёт 1 — это 7. Пробуем умножить 73 × 7 = 511. Складываем 5840 + 511 = 6351. Ура, ответ 87!

Небольшие хитрости

  1. Некруглые числа можно легко делить на 2, округляя их. Например, 358 делим на 2. Округлим 358 до 360, а затем уже его разделим на 2 — получим 130. А затем вычтем и этого числа 1 (получились в результате деления на 2 прибавленной 2).

    358 : 2 = 360 : 2 − 2 : 2 = 130 − 1 = 129

  2. Существует закономерность, по которой умножение на 5 можно почти приравнять к делению на Например, если умножить 47 × 5 = 235, а если разделить 47 : 2 = 23,5. Магия, да? То есть чтобы умножить любое число на 5, его нужно сначала разделить на 2, а затем умножить на 10.
  3. Чтобы умножить число на 25, порой проще разделить его на 4, а затем умножить на 100 (или дописать два нуля):

    12 × 25 = 12 : 4 × 100 = 3 × 100 = 300

Этих способов достаточно, чтобы тренироваться уверенно считать в уме. Помните, что делать это нужно регулярно, уделяя всего по 5–10 минут каждый день. Постарайтесь поймать свой ритм, чтобы решение таких задачек приносило удовольствие. И упирайте на правильность ответов, а не скорость — она придёт со временем. И не бросайте.

А если вам нужна помощь в решении более сложных задач, которые уже нельзя просчитать в уме, вам с радостью помогут специалисты Мультиворка

Твитнуть

Поделиться

Поделиться

Отправить

Класснуть

05.02.19 Блог Знания математика саморазвитие

multiwork.org

Как быстро умножать двузначные числа в уме?

17/11/2016

Умение мгновенно считать в уме может стать бесценным подспорьем в работе и в условиях скоростных темпов жизни современного человека.

Facebook

Twitter

Вконтакте

Однокласники

Как быстро умножать большие числа, как овладеть такими полезными навыками? У большинства вызывает затруднения устное перемножение двузначных чисел на однозначные. А о сложных арифметических расчетах и говорить нечего. Но при желании способности, заложенные в каждом человеке, можно развить. Регулярные тренировки, немного усилий и применение, разработанных учеными, эффективных методик позволят достичь потрясающих результатов. Выбираем традиционные методы Проверенные десятилетиями способы перемножения двузначных чисел не теряют своей актуальности. Простейшие приемы помогают миллионам обычных школьников, учащихся специализированных ВУЗов и лицеев, а также людям, занимающимся саморазвитием, усовершенствовать вычислительное мастерство.

Умножение с помощью разложения чисел

Наиболее легким способом, как быстро научиться умножать большие числа в уме, является перемножение десятков и единиц. Сначала умножаются десятки двух чисел, затем поочередно единицы и десятки. Четыре полученных числа суммируются. Для использования этого метода важно уметь запоминать результаты перемножения и складывать их в уме. Например, для умножения 38 на 57 необходимо:
  • разложить число на (30+8)*(50+7);
  • 30*50 = 1500 – запомнить результат;
  • 30*7 + 50*8 = 210 + 400 = 610 – запомнить;
  • (1500 + 610) + 8*7 = 2110 + 56 = 2166
Естественно, необходимо отлично знать таблицу умножения, так как быстро умножать в уме этим способом не удастся без соответствующих умений.

Умножение в столбик в уме

Визуальное представление привычного перемножения в столбик многие используют при расчетах. Этот метод подойдет тем, кто умеет надолго запоминать вспомогательные числа и выполнять с ними арифметические действия. Но процесс значительно упрощается, если вы научились, как быстро умножать двузначные числа на однозначные. Для перемножения, например, 47*81 нужно:
  • 47*1 = 47 – запомнить;
  • 47*8 = 376 – запоминаем;
  • 376*10 + 47 = 3807.
Запоминать промежуточные результаты поможет проговаривание их вслух с одновременным суммированием в уме. Несмотря на сложность мысленных вычислений, после непродолжительных тренировок этот метод станет вашим любимым. Приведенные выше способы умножения универсальны. Но знание более эффективных алгоритмов для некоторых чисел намного сократит количество расчетов.

Умножение на 11

Это, пожалуй, самый простой способ, который используется для умножения любых двузначных чисел на 11. Достаточно между цифрами множителя вставить их сумму:

13*11 = 1(1+3)3 = 143

Если в скобках получается число больше 10, то к первой цифре добавляется единица, а из суммы в скобках вычитается 10.

28*11 = 2 (2+8) 8 = 308 Умножение больших чисел

Очень удобно перемножать числа, близкие к 100 разложением их на составляющие. Например, необходимо умножить 87 на 91.
  • Каждое число необходимо представить как разницу 100 и еще одного числа: (100 — 13)*(100 — 9) Ответ будет состоять из четырех цифр, две первые из которых – разница первого множителя и вычитаемого из второй скобки или наоборот – разница второго множителя и вычитаемого из первой скобки.

    87 – 9 = 78 91 – 13 = 78

  • Вторые две цифры ответа — результат перемножения вычитаемых из двух скобок.13*9 = 144
  • В результате получаются числа 78 и 144. Если при записывании окончательного результата получается число из 5 цифр вторую и третью цифру суммируем. Результат: 87*91 = 7944.
Это самые простые способы перемножения. После многократного их применения, доведения вычислений до автоматизма можно осваивать более сложные техники. И через некоторое время проблема, как быстро умножить двузначные числа перестанет вас волновать, а память и логика существенно улучшатся.

Поделитесь этим постом с друзьями

Facebook

Twitter

Вконтакте

Однокласники

Источник

Мария

interesno.cc

Как быстро умножать числа без калькулятора - четыре необычных способа

Не любишь математику? Ты просто не умеешь ею пользоваться! На самом деле, это увлекательная наука. И наша подборка необычных методов умножения подтверждает это.

Умножай на пальцах, как купец

Этот метод позволяет умножать числа от 6 до 9. Для начала согни обе руки в кулаки. Затем на левой руке отогни столько пальцев, на сколько первый множитель больше числа 5. На правой проделай то же самое для второго множителя. Посчитай количество разогнутых пальцев и умножь сумму на десять. А теперь перемножь сумму загнутых пальцев левой и правой руки. Сложив обе суммы, получишь результат.

Пример. Умножим 6 на 7. Шесть больше пяти на один, значит на левой руке отгибаем один палец. А семь – на два, значит на правой – два пальца. В сумме – это три, а после умножения на 10 – 30. Теперь перемножим четыре загнутых пальца левой руки и три – правой. Получим 12. Сумма 30 и 12 даст 42.

Вообще-то здесь речь идет о простой таблице умножения, которую хорошо бы знать наизусть. Но этот метод хорош для самопроверки, да и пальцы размять полезно.

Умножай, как Ферроль

Этот способ получил название по фамилии немецкого инженера, который им пользовался. Метод позволяет быстро перемножить числа от 10 до 20. Если потренируешься, то сможешь делать это даже в уме.

Суть простая. В итоге всегда будет получаться трехзначное число. Так что сначала считаем единицы, потом – десятки, затем – сотни.

Пример. Умножим 17 на 16. Чтобы получить единицы, умножаем 7 на 6, десятки – складываем произведение 1 и 6 с произведением 7 и 1, сотни – умножаем 1 на 1. В итоге получим 42, 13 и 1. Для удобства запишем их в столбик и сложим. Вот и итог!

Умножай, как японец

Этот графический способ, которым пользуются японские школьники, позволяет легко перемножить двух- и даже трехзначные числа. Чтобы опробовать его, приготовь бумагу и ручку.

Пример. Умножим 32 на 143. Для этого нарисуем сетку: первое число отразим тремя и двумя линиями с отступом по горизонтали, а второе – одной, четырьмя и тремя линиями по вертикали. В местах пересечения линий поставим точки. В итоге у нас должно получиться четырехзначное число, поэтому условно разделим таблицу на 4 сектора. И пересчитаем точки, попавшие в каждый из них. Получаем 3, 14, 17 и 6. Чтобы получить ответ, лишние единички у 14 и 17 прибавим к предыдущему числу. Получим 4, 5 и 76 – 4576.

Умножай, как итальянец

Еще один интересный графический способ используется в Италии. Пожалуй, он проще японского: точно не запутаешься при переносе десятков. Чтобы перемножить большие числа с его помощью, нужно начертить сетку. По горизонтали сверху записываем первый множитель, а по вертикали справа – второй. При этом на каждую цифру должна приходиться одна клетка.

Теперь перемножим цифры каждого ряда на цифры каждой колонки. Результат запишем в клетку (разделенную надвое) на их пересечении. Если получилось однозначное число, то в верхнюю часть клетки пишем 0, а в нижнюю – полученный результат.

Осталось сложить все числа, оказавшиеся в диагональных полосках. Начинаем с нижней правой клетки. Десятки при этом прибавляем к единицам в соседнем столбике.

Вот как мы умножили 639 на 12.

Весело, правда? Нескучной тебе математики! И помни, что гуманитарии в ИТ тоже нужны!

www.teenage.by


Смотрите также

Объявление

Если у Вас есть ещё какие-либо интересные материалы (тексты, фото, видео, аудио), связанные с творческой жизнью Людмилы Тумановой, поделитесь ими со всеми нами, её многочисленными поклонниками.

Обращайтесь по адресу: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. или по телефону: 8-922-56-101-83